
Flint: Batch-Interactive Data-Intensive
Processing on Transient Servers

Prateek Sharma Tian Guo Xin He David Irwin Prashant Shenoy
University of Massachusetts Amherst

{prateeks,tian,xhe,shenoy}@cs.umass.edu irwin@ecs.umass.edu

Abstract
Cloud providers now offer transient servers, which they may
revoke at anytime, for significantly lower prices than on-
demand servers, which they cannot revoke. The low price
of transient servers is particularly attractive for executing an
emerging class of workload, which we call Batch-Interactive
Data-Intensive (BIDI), that is becoming increasingly impor-
tant for data analytics. BIDI workloads require large sets of
servers to cache massive datasets in memory to enable low
latency operation. In this paper, we illustrate the challenges
of executing BIDI workloads on transient servers, where re-
vocations (akin to failures) are the common case. To address
these challenges, we design Flint, which is based on Spark
and includes automated checkpointing and server selection
policies that i) support batch and interactive applications and
ii) dynamically adapt to application characteristics. We eval-
uate a prototype of Flint using EC2 spot instances, and show
that it yields cost savings of up to 90% compared to using
on-demand servers, while increasing running time by < 2%.

1. Introduction
Cloud computing platforms are an increasingly popular
choice for running large data processing tasks. To maximize
their utilization and revenue, Infrastructure-as-a-Service
(IaaS) cloud providers are beginning to offer their customers
the option to rent transient servers, which the provider may
revoke at any time [28]. Due to their lack of an availabil-
ity guarantee, transient servers are typically much (∼70-
90%) cheaper than on-demand servers, which providers can-
not unilaterally revoke once allocated. Both Amazon’s Elas-
tic Compute Cloud (EC2) and Google’s Compute Engine
(GCE) now offer transient servers in different forms. While
transient servers are attractive due to their low price, they

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright © 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901319

are generally only used for non-interactive batch jobs that
are tolerant to lost state or delays caused by revocation [26].

The distributed data-parallel processing frameworks,
such as MapReduce [13], that now dominate cloud platforms
have historically executed their workload as non-interactive
batch jobs. Since these frameworks were intended to oper-
ate at large scales, they were also designed from the out-
set to handle server failures by replicating their input and
output data in a distributed file system. As a result, they
required few modifications to run efficiently on transient
servers [11, 19], where revocations are akin to failures.
However, recently, there has been an increasing interest in
better supporting interactivity in data-parallel frameworks.
Interactivity enables data exploration, stream processing,
and data visualization through ad-hoc queries. These new
batch-interactive frameworks, including Spark [36] and Na-
iad [22], execute both batch and interactive applications and
effectively enable a new class of workload, which we call
Batch-Interactive Data-Intensive (BIDI).

BIDI workloads differ from the Online Data-Intensive
(OLDI) workloads [20] processed by web applications in
that the magnitude and variance of their acceptable response
latency is much larger. For example, to avoid frustrating
users, web applications often target strict latency bounds
for rendering and serving each web page, typically on the
order of 100 milliseconds with low variance. In contrast,
users interactively executing a BIDI workload often have
much more relaxed latency expectations, in part, because the
amount of data each operation acts on (and the time it takes
to complete) varies widely. Thus, users may expect query la-
tency to vary anywhere between a few seconds to a few min-
utes. We argue that BIDI workloads’ relaxed performance
requirements still make them amenable to transient servers.
Further, the low price of transient servers is particularly at-
tractive to these new frameworks, since they require large
sets of servers to cache massive datasets in memory.

Applications can employ fault-tolerance mechanisms,
such as checkpointing and replication, to mitigate the im-
pact of server revocations without rerunning the application.
Checkpointing intermediate state enables restarting an ap-
plication on a new server, and requires only partial recom-

putation from the last checkpoint. Of course, each check-
point introduces an overhead proportional to the size of the
local disk and memory state. Likewise, replicating the com-
putation across multiple transient servers enables the appli-
cation to continue execution if a subset of servers are re-
voked. However, replication is only feasible if the cost of
renting multiple transient servers is less than the cost of an
on-demand server. Prior work has only applied such fault-
tolerance mechanisms at the systems level, e.g., using vir-
tual machines (VMs) or containers [30]. While a systems-
level approach is transparent to applications, we argue that
an application-aware approach is preferable for distributed
BIDI workloads, as it can i) improve efficiency by adapting
the fault-tolerance policy, e.g., the checkpoint frequency and
the subset of state to checkpoint, to each application’s char-
acteristics and ii) avoid implementing complex distributed
snapshotting [10] schemes.

Since BIDI workloads support interactivity and low la-
tency by caching large datasets in memory, revocations may
result in a significant loss of volatile in-memory state. To
handle such losses, batch-interactive frameworks natively
embed fault-tolerance mechanisms into their programming
model. For example, Naiad periodically checkpoints the in-
memory state of each vertex, and automatically restores
from these checkpoints on failure [22]. Similarly, Spark en-
ables programmers to explicitly checkpoint distributed in-
memory datasets—if no checkpoints exist, Spark automat-
ically recomputes in-memory data lost due to server fail-
ures from its source data on disk [36]. Importantly, since
failures are rare, these systems do not exercise sophisti-
cated control over these fault-tolerance mechanisms. How-
ever, an application-aware approach can leverage these ex-
isting mechanisms to implement automated policies to opti-
mize BIDI workloads for transient servers.

Since cloud providers offer many different types of tran-
sient servers with different price and availability character-
istics, selecting the set of transient servers that best bal-
ances the per unit-time price of resources, the risk of revoca-
tion, and the overhead of fault-tolerance presents a complex
problem. To address the problem, we design Flint, a batch-
interactive framework based on Spark tailored to run on, and
exploits the characteristics of, transient servers. Specifically,
Flint includes automated fault-tolerance and server selec-
tion policies to optimize the cost and performance of execut-
ing BIDI workloads on transient servers. Our hypothesis is
that Flint’s application-level approach can significantly de-
crease the cost of running Spark programs by using transient
servers efficiently to maintain high performance—near that
of using on-demand servers. In evaluating our hypothesis,
we make the following contributions.
Checkpointing Policies. Flint defines automated check-
pointing policies to bound the time spent recomputing lost
in-memory data after a revocation. Flint extends prior work
on optimal checkpointing for single node batch jobs in the

presence of failures to a BIDI programming model that de-
composes program actions into collections of fine-grained
parallel tasks. Flint dynamically adapts its checkpointing
policy based on transient server characteristics and the char-
acteristics of each distributed in-memory dataset.
Transient Server Selection Policies. Flint defines server
selection policies for batch and interactive workloads. For
batch workloads, the policy selects transient servers to mini-
mize expected running time and cost, while considering both
the current price of resources and their probability of revoca-
tion. In contrast, for interactive workloads, the policy selects
transient servers to provide more consistent performance by
reducing the likelihood of excessively long running times
that frustrate users (for a small increase in cost).
Implementation and Evaluation. We implement Flint on
top of Spark and Mesos, and deploy it on spot instances
on EC2. We evaluate its cost and performance benefits for
multiple BIDI-style workloads relative to running unmodi-
fied Spark on on-demand and spot instances using existing
systems-level checkpointing and server selection policies.
Our results show that compared to unmodified Spark, Flint
yields cost savings of up to 90% compared to on-demand
instances and 50% when compared to spot instances, while
increasing running time by < 2%. For interactive workloads,
Flint achieves 10× lower response times when compared to
running unmodified Spark on spot instances.

2. Background and Overview
We first describe the characteristics of transient servers, and
then outline important elements of Spark’s design before
providing an overview of Flint.

2.1 Transient Servers

Our work assumes cloud platforms support transient servers,
which the platform may revoke at any time [28]. Commercial
platforms, such as Amazon’s Elastic Compute Cloud (EC2)
and Google Compute Engine (GCE), now support transient
servers. In EC2, users bid for transient servers, which are
referred to as spot instances, by specifying a maximum per-
hour price they are willing to pay. EC2 then allocates the
instances if the user’s bid price is higher than the instance’s
current market-determined spot price. The spot price in EC2
fluctuates continuously in real time based on the market’s
supply and demand [8]. Thus, if the spot price rises above a
user’s bid price due to increased market demand, EC2 may
revoke the spot server from the user after a brief two-minute
warning (presumably to allocate it to a higher-priority user).
EC2 bills for spot servers for each hour of use based on the
current spot price at the start of each hour. Thus, a spot
server’s cost is based on the average spot price over the
duration of its use, and not the user’s bid price.

As a policy, EC2 caps the maximum bid at 10× the on-
demand price of the instance type. Thus, users can never en-
tirely eliminate the chance of a revocation by simply bidding
a high price. EC2 operates a separate spot market (or spot

pool) for each instance type in each availability zone, i.e.,
data center, of each geographic region, which results in more
than 4000 global spot pools, each with its own dynamic spot
price. Of course, EC2 also offers non-revocable on-demand
instances, which we model as a distinct spot pool with a sta-
ble price and zero revocation probability.

Transient servers in Google’s Compute Engine (GCE)
cloud are called preemptible instances. As with spot in-
stances, GCE may revoke preemptible instances at anytime.
However, preemptible instances differ in that GCE charges
a fixed per-hour price for them, and their maximum lifetime
is 24 hours. As we discuss, unlike prior work on intelligent
bidding for spot instances, Flint’s fault-tolerance and server
selection policies also apply to GCE. Due to their revocable
nature, both spot servers in EC2 and preemptible instances
in GCE are significantly cheaper than their non-revocable
on-demand counterparts (up to 70% in GCE and up to 10×
in EC2). Hence, transient servers provide an opportunity to
run BIDI workloads in the cloud at a very low cost.

2.2 Spark Background

Spark [36] is a general-purpose data-parallel processing en-
gine that supports a rich set of data transformation primi-
tives. Spark’s growing popularity is due to its performance
and scalability, as well as the ease with which many tasks
can be implemented as Spark programs. For example, Spark
supports batch and MapReduce jobs, streaming jobs [37],
SQL queries [7], graph processing [34], and machine learn-
ing [21] tasks on a single platform with high performance.

Spark programs access APIs that operate on and control
special distributed in-memory datasets called Resilient Dis-
tributed Datasets (RDDs). Spark divides an RDD into par-
titions, which are stored in memory on individual servers.
Since RDDs reside in volatile memory, a server failure re-
sults in the loss of any RDD partitions stored on it. To han-
dle such failures, Spark automatically recomputes lost par-
titions from the set of operations that created it. To facili-
tate efficient recomputation, Spark restricts the set of opera-
tions, called transformations, that create RDDs, and explic-
itly records these operations. In particular, each RDD is an
immutable read-only data structure created from data in sta-
ble storage, or through a transformation on an existing RDD.

Spark records transformations in a lineage graph, which
is a directed acyclic graph (DAG) where each vertex is an
RDD partition and each incoming edge is the transforma-
tion that created the RDD. Importantly, transformations are
coarse-grained in that they apply the same operation to each
of an RDD’s partitions in parallel. Thus, Spark may use the
lineage graph to recompute any individual RDD partition
lost due to a server failure from its youngest ancestor res-
ident in memory, or, in the worst case, from its origin data
on disk. In addition, Spark allows programmers to save, i.e.,
checkpoint, RDDs, including all of their partitions, to disk,
e.g., in a distributed file system, such as HDFS [27]. In this
case, rather than recompute a lost RDD partition from its

1

2

1

2

1

2

Input-data RDD-a RDD-b

Partitions

Depdencencies

Recomputation Lost partition

(a) No checkpointing

1

2

1

2

RDD-a RDD-b

Checkpointed RDD

Recompute

Lost partition

(b) RDD-a checkpointed

Figure 1. The loss of RDD-b’s partition #2 results in recom-
putation using lineage information. Partitions may be com-
puted in parallel on different nodes.

origin data (or its youngest ancestor resident in memory),
as depicted in Figure 1a, Spark may recompute it from its
youngest saved ancestor, as depicted in Figure 1b.

Spark’s RDD abstraction is versatile and has been used
for long-running “big-data” batch jobs, as well as interactive
data processing. Interactive jobs may come in several vari-
eties. For example, users can used a Read-Eval-Print-Loop
(REPL) for interactive and exploratory analysis. As another
example, Spark can be employed as a database engine with
SQL queries executed via a translation layer such as Spark-
SQL. Both examples require the Spark cluster to remain
available for long periods of time: an exploratory REPL
analysis may take several hours, and a database engine must
be continuously available. Hence, if transient servers are
used as cluster nodes, there is a risk of losing in-memory
state, requiring significant overhead to regenerate and thus
severely degrading interactivity. Flint includes automated
policies to mitigate and respond to resources losses due to
transient server revocations.

2.3 Flint Overview

Flint’s goal is to optimize running BIDI workloads on tran-
sient servers. We design Flint as an application-aware frame-
work for running Spark-based BIDI workloads that lever-
ages Spark’s built-in mechanisms to implement new policies
to mitigate the impact of server revocations on performance.
Flint’s objective is to execute BIDI workloads, in this case in
the form of Spark programs, at near the performance of on-
demand servers, but at a price near that of transient servers.
To achieve its objective, Flint provisions a fixed number of
servers N to execute each BIDI job. Unlike a traditional
cloud server, however, in Flint’s case, these servers are tran-
sient and may be revoked at any time.

Since Flint’s objective is to achieve performance near that
of on-demand servers, on a revocation, it always requests
and provisions a new transient server to maintain a cluster
size at N. To achieve the highest performance at the lowest
cost, Flint prefers transient servers with low prices, which
are much cheaper than on-demand servers, and low revoca-
tion rates, which are near the 0% revocation of on-demand
servers. Of course, in practice, the lowest prices might not
always be associated with the lowest revocation rates. Thus,
Flint must select transient servers to minimize the overall
cost of running a BIDI job that takes into account the aver-

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
Time to Failure (Hr.)

E
C

D
F us−west−2c [701.14Hr.]

eu−west−1c [101.10Hr.]

sa−east−1a [18.77Hr.]

(a) EC2 spot instances

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
Time to Failure (Hr.)

E
C

D
F

f1−micro [21.68Hr.]

n1−standard−1 [20.26Hr.]

n1−highmem−2 [22.92Hr.]

(b) Google preemptible VMs

Figure 2. Empirically obtained availability CDFs and MT-
TFs of transient servers on Amazon EC2 and Google GCE.

age per-hour price of each transient server and the overhead
of recomputing lost work based on the revocation rate.

As noted earlier, Spark exposes an interface to checkpoint
RDD state to disk, but leaves it to the programmer to deter-
mine what RDDs to checkpoint, when, and how frequently.
Flint exploits this flexibility to implement an intelligent, au-
tomated checkpointing strategy tailored for transient servers.
While EC2 provides a two minute revocation warning, it
is not sufficient to complete Spark checkpoints of arbitrary
size and restarting from incomplete checkpoints is not safe.
Google provides an even smaller warning of only 30 sec-
onds. Thus, Flint does periodic checkpointing in advance so
there is always some checkpoint of previous RDDs.

In general, the overhead of recomputing lost work due to
a transient server revocation poses a challenging problem,
since it requires Flint to balance the overhead of checkpoint-
ing RDDs with the time required to recompute them. At low
revocation rates, checkpointing too frequently increases run-
ning time by introducing unnecessary checkpointing over-
head, while similarly, at high revocation rates, checkpoint-
ing too rarely increases running time by causing significant
recomputations. In addition, for interactive BIDI jobs, Flint
must consider not only the overall cost of running a pro-
gram to completion, but also the latency of completing each
action within the program. For example, an interactive pro-
gram might trade a small increase in overall cost (and run-
ning time) for a more consistent latency per action.

Finally, we structure Flint as a managed service that pro-
visions and manages clusters on behalf of end-users execut-
ing BIDI jobs. As we discuss, Flint differs from EC2’s Spark
on Elastic MapReduce (Spark-EMR [2]) which runs unmod-
ified Spark. Unlike Spark-EMR in which users have to select
transient servers and handle the effects of their revocations,
Flint embeds policies and mechanisms for selecting transient
servers based on their price/revocation characteristics (mon-
itored in real-time), and determines when and how often to
checkpoint RDDs.

3. Flint Design
Flint is an application-aware framework for executing BIDI
jobs on transient cloud servers. Flint’s current design sup-
ports Spark-based BIDI jobs, implements application-aware,

i.e., Spark-aware, policies for selecting and provisioning
which transient servers to run on (based on their price and
revocation rate characteristics), and determines when and
how frequently to checkpoint application state, e.g., RDDs,
based on expected transient server costs and revocation rates.
To ensure transparency to end-users, Flint runs unmodified
Spark programs. While Spark exposes a checkpointing in-
terface for RDDs (via the checkpoint() operation), it re-
quires the programmer to explicitly use it in Spark programs.
In contrast, Flint automates the use of this checkpoint-
ing mechanism by intelligently determining what RDDs to
checkpoint and how often to do so.

In addition, Flint’s transient server selection policy runs
as a separate node manager that monitors transient server
characteristics, such as the recent spot price history for
different instance types on EC2, to initially select tran-
sient servers for the cluster and to replace revoked transient
servers while the program is running. We first discuss Flint’s
checkpointing and server selection policy for batch applica-
tions, and then extend it to support interactive applications.

3.1 Batch Applications

For batch BIDI jobs, Flint’s goal is to execute batch-oriented
Spark programs with near the performance of on-demand
servers, but at a cost near that of transient servers. In this
case, Flint provisions a homogeneous cluster of transient
servers for each user. Since all transient servers in the clus-
ter are of the same type, and the same bid price is used to
provision them, it follows that when the market-driven spot
price rises above this bid price, all servers in the cluster will
be simultaneously revoked. Flint’s checkpointing policy, dis-
cussed below, is derived from this insight and is specifically
designed to handle the case where all servers of a cluster are
concurrently revoked. We then outline the optimal server se-
lection policy for batch applications, which leverages our as-
sumption above that all transient servers are homogeneous.

3.1.1 Checkpointing Policy

Running a batch-oriented Spark program on a homogeneous
cluster of transient servers, where a revocation causes the en-
tire cluster to be lost simultaneously, is analogous to a single-
node batch job that experiences a node failure—in both cases
the job loses all of its compute resources. We adapt a well-
known result from the fault tolerance literature [12] for de-
riving the optimal checkpointing interval for single node
batch jobs for a given Mean-Time-to-Failure (MTTF). This
optimal checkpointing interval minimizes the running time
of a batch application when considering the rate of failures
(or revocations), the overhead of checkpointing, and over-
head of recomputation. Note that minimizing a batch appli-
cation’s running time also minimizes its cost on cloud plat-
forms, since cost is structured as a price per unit time of use.

For a single-node batch job, running on a server with a
given MTTF and a time to checkpoint δ , a first-order ap-
proximation of the optimal checkpointing interval is τopt ∼

√
2 ·δ ·MTTF [12]. This approximation assumes the time

to write the checkpoint is constant at all intervals and δ �
MT T F ; if the MTTF is smaller than δ then there is no guar-
antee the job will finish, as it will continue to fail before
completing each checkpoint and not make forward progress.
In Flint’s case, the δ �MT T F constraint holds, since δ is
on the order of minutes (to write RDD partitions of varying
sizes to remote disk) and the MTTF for transient servers in
EC2 and GCE is on the order of hours (see Figure 2).

Note that in the single-node case, the optimal checkpoint-
ing interval depends only on the MTTF and the checkpoint-
ing time δ , and not the running time of the job. In Flint’s
case, we can derive the expected MTTF of each type of tran-
sient servers on both EC2 and GCE. Since Amazon EC2 re-
vokes spot instances whenever their spot price rises above
a user’s bid price, we can use historical prices for each in-
stance type to estimate their MTTF for a given bid price.
Amazon provides three months of price history for each
spot market, and longer traces are available from third-party
repositories [17]. While GCE does not expose a similar type
of indirect information about revocation rates, we know that
GCE always revokes a server within 24 hours of launching it.
In addition, users may estimate the MTTF for a small cost by
issuing requests for different server types and recording their
time to revocation. We performed such measurements, and
found that currently in GCE the MTTF is near 24 hours (see
Figure 2). In contrast, the MTTF varies much more widely
between server types in EC2 due its dynamic pricing. For
example, with a bid price equal to the on-demand price for
the equivalent server, the MTTF ranges from 18–700 hours.

In addition to deriving the MTTF, Flint must also deter-
mine what in-memory state to checkpoint during each inter-
val τ , which dictates the checkpointing time δ . Flint’s check-
point policy for batch applications is as follows.

Policy 1: Every τ time units, checkpoint RDDs that are at
the current frontier of the program’s lineage graph.

Thus, rather than checkpoint all state in the RDD cache
on each server, which spans both memory and disk, every
τ time units, Flint only checkpoints each new RDD at the
frontier of the lineage graph every interval. The frontier of
the lineage graph includes the most recent RDDs for which
all partitions have been computed, and whose dependencies
have not been fully generated.

Thus, in the lineage graph, the frontier includes all RDDs
that have no descendants, i.e., the current set of sink nodes in
the graph. Note that although the complete lineage graph is
not known a priori since it generates new RDDs and evolves
dynamically as the program executes, the lineage graph’s
frontier is always well-known. Specifically, Flint signals that
a checkpoint is due every interval τ . After signaling, each
new RDD generated at the frontier of its lineage graph is
marked for checkpointing. Note that RDDs that are already
(or are in the process of) being computed have no guarantee

of being in memory, and may require recomputation. Spark
maintains a cache of RDD partitions on each server that
swaps RDD partitions to and from disk based on their usage,
and may delete RDD partitions if the cache becomes full.

Once each RDD at the frontier of each lineage graph has
been checkpointed, Flint will not checkpoint any subsequent
RDDs that are derived from them in the lineage graph un-
til the next interval τ . We assume here that the computation
time for RDDs does not exceed the checkpointing interval
τ . Since most RDD transformations, such as map and fil-
ter, have narrow dependencies, the computation time for any
single RDD is brief. However, we treat shuffle actions with
wide dependencies as a special case, since each RDD par-
tition that results from a shuffle depends on all partitions in
the dependent RDD, resulting in a longer computation time.
Because shuffles involve a larger amount of recomputation
due to their wide dependencies, we checkpoint shuffle RDDs
more frequently at an interval of τ divided by the number of
RDD partitions that are being shuffled from. If server revoca-
tions occur during a shuffle operation (which act as barriers),
then it is possible that the other nodes might end up waiting
until the shuffle data is recomputed, as in a bulk synchronous
parallel system. In all other cases, the recomputation opera-
tion does not cause waiting.

Finally, unlike in the optimal formulation above, the num-
ber of RDDs and the time required to write them to disk,
i.e., the checkpointing time, is not static, but dictated by
each program. Thus, Flint maintains a current estimate of the
checkpointing time δ based on the time it takes to write all
RDD partitions, which have a well-known size, in parallel
to the distributed file system. As δ changes, Flint dynami-
cally updates the checkpointing interval τ as the application
executes. Although an accurate δ estimate improves the ac-
curacy of the checkpoint interval τ , we note that τ is pro-
portional to the square root of δ , which reduces estimation
errors. More importantly, since we only checkpoint when
RDDs are generated and not at arbitrary times, the system
is not particularly sensitive to an accurate estimation of τ .

Flint supports general Spark programs with arbitrary
characteristics. Thus, Flint’s dynamic checkpointing interval
automatically adapts to the characteristics of the program,
checkpointing more or less frequently as the overhead due to
checkpointing falls and rises, respectively. Note that, since
RDDs are read-only data structures, the checkpoint opera-
tion in Spark is asynchronous and does not strictly block the
execution of other tasks. However, checkpointing tasks con-
sume CPU and I/O resources that proportionally degrade the
performance of other tasks run as part of a Spark program.

3.1.2 Server Selection Policy

Based on the checkpointing policy above, we can com-
pute the expected percentage increase in running time for
a Spark program when running on transient servers with dif-
ferent price and revocation rate characteristics. Our goal is to
choose a single type of transient server that has the least in-

crease in running time (and thus, the least cost) to provision
a homogenous cluster to execute the program. Specifically,
in the case of spot instances, for a market k with an MT T Fk
based on the revocation rate at a certain bid price over the
recent spot price history, the overall expected running time
E[Tk] for the program with a running time of T without any
revocations is as follows.

E[Tk] = T +
T
τ
∗δ +

T
MT T Fk

(
τ

2
+ rd

)
(1)

The first term is the running time of the program without
any revocations, the second term is the additional overhead
over the running time of the program due to checkpointing,
and the third term is the additional overhead over the run-
ning time T due to provisioning new replacement servers
(rd) and recomputing the lost work, assuming that revoca-
tions are uniformly distributed over the checkpointing inter-
val τ . The delay rd for replacing a server is a constant—
for EC2, it is typically two minutes. Factoring out T yields,
E[Tk] = T (1+ 1

τ
∗ δ + 1

MT T Fk
(τ

2 + rd)). Thus, we only need
to know δ in addition to MT T Fk to compute the percent-
age increase in running time on a market k. We conserva-
tively estimate an initial δ by assuming our Spark cluster
is properly sized for the application, and derive δ assuming
that all memory is in use by active RDD partitions that must
be checkpointed. We record the computation time for each
RDD partition, and assume that the recomputation time for
a partition will be the same as its initial computation time,
given the same resources available. The immutable nature of
RDDs, the lack of external state dependencies, and the static
RDD dependency graph means that we can safely make this
assumption.

Given E[Tk] above, if the average per-unit price of each
market k is pk, we can derive the expected cost simply as :

E[Ck] = E[Tk]∗ pk = T (1+
1
τ
∗δ +

1
MT T Fk

∗ τ

2
)∗ pk (2)

Since T is a constant, minimizing E[Ck] requires choos-
ing the market where the product of pk and (1 + 1

τ
∗ δ +

1
MT T Fk

∗ τ

2) is minimized. To do so, Flint simply evaluates
this product across all potential spot markets, and provisions
all servers in the cluster from the market that yields the min-
imum overall cost. Of course, for each market, a different
bid price yields a different MT T Fk and pk. By default, Flint
bids the equivalent on-demand price for all spot instances, as
spot instances are cheaper if the spot price is less than the on-
demand price. Note that we include on-demand instances as
a spot market with an infinite MTTF (where checkpointing is
not required). If the average price pk exceeds the on-demand
price, Flint transitions to using on-demand instances.

Note that, selecting servers from any other market than
the one that yields the minimum overall cost will increase the
overall cost for executing a batch application. Since batch
applications are delay tolerant and are concerned with over-
all running time and cost, they can tolerate simultaneous re-
vocations of all servers—the job can resume from a prior

2GB 4GB 6GB
PageRank data size

0
100
200
300
400
500
600
700

In
cr

ea
se

 in

 R
un

ni
ng

 ti
m

e
(%

) Out of Memory

Figure 3. Simultaneous server revocations substantially in-
crease running time if Spark runs out of available memory.

checkpoint. This insight enables us to model parallel Spark
programs similarly to single-node batch applications. The
performance characteristics under different number of si-
multaneous failures are shown in Section 5.3.
Restoration Policy. Whenever a revocation event occurs,
Flint uses the same process as above to immediately select a
new market to resume execution. When selecting a new mar-
ket, Flint does not consider the market that experienced the
revocation event, since the instantaneous price of that market
has risen and the servers are not available. In addition, while
Flint bases its selection on the average market price over a
recent window, it does not consider markets with an instan-
taneous price that is not within a threshold percentage, e.g.,
10%, of the average market price. In the worst case, where
prices across all markets are high, Flint resumes execution
on on-demand servers, which are non-revocable.

3.2 Interactive Applications

While large simultaneous revocations do not degrade the
running time of batch applications (relative to the same num-
ber of individual revocations), they do degrade the response
latency of interactive BIDI jobs. Large simultaneous server
revocations result in the need to concurrently recompute
many RDD partitions, creating contention for resources on
the surviving servers, which must multiplex their current
work with recomputing lost RDD partitions. In the worst
case, if the RDD working set is larger than the available
memory on the remaining servers, Spark must swap RDD
partitions between memory and disk as necessary to execute
each task. Figure 3 shows the impact on performance under
memory pressure due to large revocations. Such swapping
increases the latency for interactive BIDI jobs.

Thus, applying the above policies designed for batch
BIDI jobs to interactive ones will result in highly variable
response latencies. Hence, rather than minimizing the ex-
pected cost and running time on transient servers, interactive
BIDI jobs also value minimizing the variance between the
maximum latency and the average latency of actions to pro-
vide more consistent performance, as opposed to excessively
long latencies for some actions and short latencies for others.
We can reduce this variance in latency by constructing a het-
erogeneous cluster for each interactive BIDI job—by mixing
together different types of transient servers, e.g., from dif-

ferent spot markets, in the same cluster. Assuming that the
demand and supply dynamics, and hence spot prices, for dif-
ferent transient server types are uncorrelated, a price spike
in one market is independent of others. Hence, the revoca-
tion of one type of transient server due to a price increase in
its market is independent of others and the cluster will only
lose a fraction of the servers on each revocation event. In this
case, the Spark program will continue execution on the re-
maining nodes, albeit more slowly, and can resume normal
execution after Flint restores the revoked nodes to the clus-
ter. We describe this policy as follows.
Policy 2: Reduce risk through diversification—choose tran-
sient servers of different types with uncorrelated prices to
reduce the risk of simultaneous revocations.

Figure 4 shows that revocations on many (but not all)
spot markets in EC2 are in fact independent and uncorre-
lated. However, as discussed above, selecting any market
other than the one that minimizes the overall cost will in-
crease the overall cost and running time of the application.
Thus, even for interactive BIDI jobs, it is important to intel-
ligently mix transient servers from different markets to re-
duce the variance in latency without significantly increasing
the overall cost and running time of the application.

3.2.1 Checkpointing Policy

Before discussing our selection policy for interactive appli-
cations, we must first determine the appropriate checkpoint-
ing policy. Of course, we could also reduce our variance in
latency by checkpointing more frequently, and thus enabling
recovery from each large revocation event by simply read-
ing in the checkpointed state. However, checkpointing too
frequently degrades the average case performance. Instead,
we extend the same checkpointing policy as above, assum-
ing that we equally divide our cluster of size N across tran-
sient servers selected from m markets. In this case, we must
estimate the aggregate MTTF for the heterogeneous cluster
by computing the harmonic mean of MT T F1 · · ·MT T Fm of
each individual server type within the cluster.

MT T F =
1

1
MT T F1

+ · · ·+ 1
MT T Fm

(3)

Note that the aggregate MTTF will be smaller than the
MTTF for each individual market, in that there will be more
revocation events, but each one will only result in the revoca-
tion of N/m servers. Thus, our checkpointing interval above
will decrease, causing more frequent checkpoints. However,
the size of each revocation event will also decrease, com-
pared to using a single market. If we assume the overhead
of recomputation for a Spark program is linear in the num-
ber of revoked servers, then when using more markets, the
overhead of recomputation due revocation events decreases,
while the number of revocation events increases. This de-
crease in the recomputation overhead for each event tends to
balance out the increased number of revocation events due

0

5

10

15

0 5 10 15
Spot Market

S
p
o
t
M

a
rk

e
t

(a) us-east-1a

0

5

10

15

20

0 5 10 15 20
Spot Market

S
p
o
t
M

a
rk

e
t

(b) m2.2xlarge

Figure 4. Publicly available EC2 spot price traces show
that prices (and hence revocations) are pairwise uncorrelated
(shown by darker squares) for most pairs of markets.

to the lower MTTF, although we leave a formal proof of this
property to future work.

3.2.2 Server Selection

To intelligently provision a heterogeneous cluster, we first
construct a subset L of mutually uncorrelated markets among
all the possible markets. We construct L for two reasons.
First, published price histories show that revocations usually
do not happen simultaneously in different spot markets (in
Figure 4, darker squares indicate less correlated failures be-
tween any two markets). This observation confirms the feasi-
bility of diversifying across markets to reduce concurrent re-
vocation risk. Second, since there are potentially many mar-
kets to choose from—over 1000 markets in EC2’s US-east
region alone—constructing a smaller set of L markets prunes
the search space. We greedily construct L by adding the most
pairwise uncorrelated markets to L.

As before, we do not consider markets where the instan-
taneous risk of revocation is high, i.e., the spot price is not
within some threshold of the average spot price. We then
sort these candidate markets in order of their expected cost
using the same approach as above for batch applications. Af-
ter sorting the candidate markets, we greedily add markets to
our set of selected markets S in order, as follows.

We first select the market that yields the minimum ex-
pected cost and then compute the expected variance in its
running time based on the market’s revocation rate. We
compute the variance in the expected running time σ2 =
E[T (S)−E[T (S)]]2 = E[T (S)2]−E[T (S)]2 for a set of mar-
kets S, where servers are equally distributed among the mar-
kets in S. In Equation 1 we have shown the scenario for a
single market k; extending it to m = |S| markets yields:

E[T (S)] = T +
T
τ
∗δ +

T
MT T F(S)

· 1
m
·
(

τ

2
+ rd

)
(4)

With multiple independent markets, when one market
fails, only 1/m fraction of the servers are lost (because they
are equally distributed among all markets). Note that the
MTTF for multiple markets above is given by Equation 3.

We then select the market with the next lowest cost, and
equally divide our servers between the two markets. For the

mixed cluster, we again compute the expected variance in
running time. If the expected variance is higher than the sin-
gle market, we stop and do not add the second market; if the
expected variance is lower, we evaluate the expected vari-
ance from dividing the servers among the three lowest cost
markets. We continue adding markets until adding an addi-
tional market does not decrease the variance in running time.
We also stop if the expected cost ever rises above the ex-
pected cost of running the application on on-demand servers.
As shown in our evaluation, the result of this server selection
algorithm is a mix of servers from different markets that de-
crease the variance in running time, providing consistent re-
sponse latency, without significantly increasing the cost rel-
ative to the optimal cost in the batch case.
Restoration Policy. In addition to determining the initial
mix of servers from different markets for the cluster, Flint
must also replace a set of revoked instances from a particular
market with instances from another market. To do so, Flint
simply replaces these revoked instances with instances from
the lowest-cost unused market in set L. As above, Flint
does not consider markets with instantaneous prices that are
significantly higher than their average price.
Bidding Policy. Flint uses a simple bidding policy to place
bids for each spot server—we bid the on-demand price. Bid-
ding in the current EC2 spot market has only a negligible ef-
fect on the average cost and the MTTF—these metrics stay
the same for a very large range of bids. In Figure 11, which
shows the expected costs for three instance types, we can see
that the range of bids for which the cost remains unaffected
is quite large. For example, bidding anywhere from 0.5 to
2× the on-demand price for the m2.2xlarge instance type
yields the same cost. For all three types shown in the fig-
ure, the on-demand price is inside the wide range that yields
the minimum price. Our simple bidding policy is thus moti-
vated by the insensitivity of expected cost and MTTF on the
bid [25], as well as a focus on systems mechanisms to han-
dle spot revocations which can work even in environments
where no bidding mechanisms apply, as in the case of GCE
Preemptible Instances, which have a fixed price.

If market characteristics were to change, a modification to
the simple bidding strategy might be necessary. Since Ama-
zon provides up to three months of price history, the em-
pirical relation between bids and the average price and MT-
TFs can be used to select bids that will minimize the ex-
pected cost using Equation 2. A similar approach can be
found in [26, 25]. Lastly, we bid the same price for all the
instances in a given market. However, a more sophisticated
policy could stratify the bids within a market such that in-
stances with different bid prices fail at different times. How-
ever, stratifying bids is not currently effective, as price spikes
in the current spot markets are large and cause servers with
a wide range of bids to all fail simultaneously [26].
Arbitrage. Flint reduces costs by using low-cost spot in-
stances and spreads revocation risks by exploiting the uncor-

Mesos

Spark

Node manager

Fault-tolerance
manager

Spot Instances

Market 1 Market 2

S3/
HDFS

User

Command-line API

Write/Read
Checkpoints

Figure 5. Flint architecture and system components.

related prices across different spot instance markets. A con-
cern is that neither of these characteristics of the spot mar-
kets might hold if systems such as Flint gain in popularity
and the demand for spot instances increases. This increased
demand might drive up market prices and volatility, causing
the cost savings of spot servers to vanish. However, we be-
lieve that as infrastructure clouds continue to grow and add
capacity, the surplus capacity (which is sold as spot servers)
would also grow, such that the increase in demand would
be matched by an increase in supply. Furthermore, systems
like Flint only represent a small portion of users of the spot
market: other users and systems utilize spot instances in dif-
ferent ways and have different spot instance demand charac-
teristics. A more detailed analysis of the second-order mar-
ket effects and other “game-theoretic” analysis is outside the
scope of this paper, and we assume that the large numbers
and sizes of the spot market will absorb the effects of the
arbitrage opportunities Flint exploits.

4. Flint Implementation
We implemented a Flint prototype based on Spark 1.3.1 in
about 3000 lines of Scala and Python. The prototype in-
cludes the policies for batch and interactive Spark appli-
cations from the previous section. Users interact with Flint
via the command-line to submit, monitor, and interact with
their Spark programs. Flint’s implementation is split into
two main components: a node manager that interfaces with
Mesos and EC2, and implements the server selection policy,
as well as a fault-tolerance manager embedded in Spark that
implements the checkpointing policy (Figure 5). Our imple-
mentation primarily integrates with EC2 and supports spot
instances. However, our approach is compatible with GCE,
which offers transient servers at a fixed price per unit time.

To implement the server selection policy, the node man-
ager accepts user requests for Spark clusters of size N to run
their application, and selects the specific spot market(s) to
provision the servers. To implement the batch and interac-
tive server selection policy, the node manager monitors the
real-time spot price in each EC2 spot market and maintains
each market’s historical average spot price and revocation
rate (and MTTF) over a recent time window, e.g., the past
week. The node manager acquires one or more servers in a
particular market by placing a bid for them in the spot mar-
ket at the on-demand price via EC2’s REST API. Each Spark
cluster in Flint runs in its own Virtual Private Cloud (VPC)
that is isolated from other users. Flint launches the instances

with its own customized disk image, e.g., an Amazon Ma-
chine Image (AMI), which contains a pre-configured ver-
sion of a Spark master and worker. After the initial setup,
Flint provides users with a web interface, as well as SSH
connectivity, to the master and worker nodes to monitor job
progress and use Spark interactively via the Spark shell.

Flint’s fault-tolerance manager is written as a core Spark
component so it may interact with Spark’s internal APIs
for scheduling, RDD creation, and checkpointing. The fault-
tolerance manager monitors the set of RDDs at the frontier
of the lineage chain, checkpoints them to stable storage ev-
ery interval τ , and updates δ and τ as new RDDs are created.
To compute τ , the fault-tolerance manager must interact with
the node manager to retrieve the MTTF of each server in the
cluster. To implement the checkpointing interval, the fault-
tolerance manager maintains an internal timer for τ , and
marks the first RDD in the queue from each active stage after
the timer expires for checkpointing. If Flint marks an RDD
for checkpointing, it checkpoints each individual partition
of that RDD. To support automated checkpointing, we mod-
ify Spark’s existing checkpointing implementation to enable
fine-grained partition-level checkpointing. In Flint, once a
task finishes computing its partition, it notifies Spark’s DAG
scheduler, which then invokes the fault-tolerance manager
to check if it has marked the corresponding RDD for check-
pointing. If so, it creates a new checkpointing task, which
handles the asynchronous checkpoint write operation.
Checkpoint Garbage Collection. We have also imple-
mented a garbage collector for checkpointed RDDs to re-
duce storage requirements. Checkpointing an RDD termi-
nates its lineage graph and its ancestor RDDs are no longer
“reachable.” Checkpoints for these unreachable RDDs are
redundant and thus periodically removed. Lastly, to mitigate
the impact of spot instance revocations, the node manager
monitors the 120 second spot termination warning provided
by EC2’s /spot/termination-time API. If Flint detects
a warning on any worker, it immediately triggers the market
selection on the node manager which selects and requests
replacement instances. As part of this notification, the fault-
tolerance manager informs the node manager of the most
current values for δ and τ based on the collective size of the
RDDs at the frontier of the lineage chain. The node manager
needs these values to execute its server selection policy to
replace revoked servers.
Checkpoint Storage. Flint stores all partition checkpoints
that belong to a single RDD inside the same directory on
HDFS. On recovery, we first check if the partition exists
in the corresponding directory before any starting any RDD
(re)computation. We use Elastic Block Store (EBS) volumes
and treat them as durable storage. Using EBS instead of lo-
cal, on-node storage has several advantages. Data on local
disks is lost upon revocation, and a revocation event can
cause the data loss such that HDFS cannot recover even us-
ing 3-way replication. In addition, the amount of local stor-

age in EC2 is limited, e.g., 10GB on most nodes. However,
unlike local storage which is free, there is an extra cost for
EBS volumes which depends on their size and I/O rate. Be-
cause we use EBS to only store checkpoints, which we fre-
quently garbage collect, the EBS disk size required is small.
In addition, the I/O rate is limited as Flint judiciously regu-
lates checkpointing frequency. We use the two minute revo-
cation warning to pause all nodes, flush data, and cleanly un-
mount all EBS volumes. After revocation, we first let HDFS
recover the missing chunks. If that fails for any reason, since
the data on EBS volumes persists even after revocations,
we copy all the data from the EBS volumes to the newly
launched instances [5].

The SSD EBS volumes which Flint uses are currently
charged $0.10 per GB per month by Amazon. Because Flint
provides Spark as a managed service, these EBS volumes
are reused among jobs, and the EBS costs are thus amor-
tized. EBS volumes required for storing Flint checkpoints
cost about 1-2% of on-demand instances, adding an over-
head of about 10-20% to the final cost using spot instances.
A more detailed cost analysis and breakdown of storage is
presented in Section 5. We are not constrained in the choice
of checkpoint storage and there are other options that are
feasible as well. For example, Amazon’s S3 object store is
about 20 times cheaper than EBS, and is a viable option
for reducing storage costs, albeit at worse read/write per-
formance. Amazon’s Elastic MapReduce File System (EM-
RFS [2]) uses a combination of S3 and DynamoDB database
for low-cost storage for Spark. A similar storage configura-
tion can be used for storing Flint checkpoints at low cost.

5. Experimental Evaluation

We conducted our experiments by running popular Spark
programs on Amazon EC2 to quantify Flint’s performance
and cost benefits for both batch and interactive BIDI
workloads. We run all experiments on a Spark cluster of
10 r3.large instances in EC2’s US-East region. Each
r3.large instance has 2 VCPUs, 15GB memory, and 32GB
of local SSD storage. We use persistent network-attached
disk volumes from Amazon’s Elastic Block Store (EBS)
to set up the HDFS filesystem (with a replication factor of
three) and use it to store RDD checkpoints.

Our evaluation includes systems experiments using our
Flint prototype to evaluate the effect of recomputation and
checkpointing on real Spark applications, as well as simula-
tion experiments to examine the cost and performance char-
acteristics of Flint over long periods under realistic market
conditions. We use a range of batch and interactive work-
loads in our evaluation, as described below. The input data
sizes for each workload listed below were carefully chosen
to max out the total cluster memory used by intermediate
RDDs and to ensure stable Spark behaviour even under node
revocations.

ALS KMeans PageRank
0
2
4
6
8

10
12

Ch
ec

kp
oi

nt
in

g
Ta

x
(%

)

(a) Performance overhead due to Flint’s RDD
checkpointing.

Flint-RDD System-level
Checkpointing type

0
10
20
30
40
50
60
70

Ch
ec

kp
oi

nt
in

g
Ta

x
(%

)

(b) System level distributed checkpointing over-
head is large compared to RDD checkpointing.

50 20 5 1
Cluster MTTF(hours)

0
10
20
30
40
50
60

Ch
ec

kp
oi

nt
in

g
Ta

x
(%

)

(c) Checkpointing overhead for the ALS work-
load increases with increasing market volatility.

Figure 6. Performance overhead of system- and application-level checkpointing.

5.1 Workloads

PageRank. PageRank is a graph-processing workload that
computes the rank of each page in a web graph iteratively
based on the rank of the pages that link to it. PageRank is
a good candidate for evaluating our checkpointing policy,
since it creates a large number of RDDs—proportional to the
number of vertices in the graph—and involves a large num-
ber of shuffle operations. We use the optimized PageRank
implementation from Spark’s graphx library. For our exper-
iments, we use the Live Journal [3] dataset of size 2GB.
KMeans Clustering. KMeans is a clustering algorithm that
partitions data points into k clusters with the nearest mean.
We use KMeans clustering as an example of a compute-
intensive application: it consists of applying a series of nar-
row dependencies to an RDD and then a large shuffle op-
eration per iteration. We use the optimized implementation
from Spark’s mllib.DenseKMeans library with a randomly
generated dataset of size 16GB. KMeans is a prototypical
example of a iterative machine learning technique.
Alternating Least Squares. Alternating Least Squares
(ALS) is a linear regression model that fits a set of data
points to a function with the minimum sum of squared er-
rors between the model and the data points. ALS’s RDD
lineage graph is similar in structure to KMeans. How-
ever, ALS is more shuffle-intensive where each transforma-
tion takes more time than with KMeans. We use Spark’s
mllib.MovieLensALS implementation on a 10GB dataset.
TPC-H. We use Spark as an in-memory database server
that services clients issuing SQL queries from the TPC-H
database benchmark with a data size of 10GB [4]. Since
TPC-H queries are data-intensive, to accelerate query execu-
tion, Flint de-serializes and re-partitions the raw files stored
on disk first and then persists them in memory as RDDs.
Each time a new query arrives, Flint executes it using in-
memory data rather than loading the data from disk again.
TPC-H is an interactive workload where the query response
latency is the primary metric, rather than the running time.
The workload is shuffle- and join-intensive, as many SQL
queries translate to shuffle and join operations on RDDs.

5.2 Quantifying the Checkpointing Overhead

We first verify and quantify the overhead due to checkpoint-
ing RDDs in Flint and compare it with both the perfor-

PageRank KMeans ALS
0

20

40

60

80

100

Ru
n

Ti
m

e
In

cr
ea

se
 (%

)

Recomputation
Node acquisition

Figure 7. Recomputation of lost RDD partitions due to a
single revocation causes a 50-90% increase in running time.

mance of running on on-demand servers without checkpoint-
ing, and with a systems-level checkpointing approach. The
overhead due to checkpointing dictates how close Flint’s per-
formance on transient servers comes to the performance of
on-demand servers. For these experiments, we use a rela-
tively low MTTF of 50 hours to highlight the checkpointing
overhead—the MTTFs in current EC2 spot markets range
from 20 to 2000 hours.

We first measure the checkpointing overhead for three
batch workloads when the MTTF is equal to 50 hours us-
ing Flint’s intelligent checkpointing algorithm. As Figure 6a
shows, the performance overhead due to checkpointing, as
percentage increase in running time, for all three batch ap-
plications is small, ranging from 2% to 10%. Of these three
applications, ALS has the largest collective set of RDDs and
hence also has the highest checkpointing overhead. Due to
the larger data sizes and higher network utilization (the most
constrained and bottlenecked resource for Flint), the check-
pointing overhead for ALS is also the highest.

Next, we compare the performance overhead of Flint’s
intelligent application-level checkpointing with a systems-
level approach using the same checkpointing frequency.
A systems-level distributed checkpointing approach must
checkpoint the entire memory state of each Spark worker,
including all active RDDs, cached RDDs, shuffle buffers
etc. In contrast, by checkpointing only the frontier of the
RDD lineage graph from within the application, Flint can
avoid checkpointing stale application state or unnecessary
system state. As shown in Figure 6b, the systems-level ap-
proach increases the running time by 50% compared to our
application-level approach that only checkpoints selective
RDDs. The result demonstrates the benefit of leveraging
fault-tolerance mechanisms that are already embedded into

data-parallel frameworks for high failure-rate environments
like transient servers.

Last, we measure the change in checkpointing overhead
when running the ALS workload on transient servers with
varying volatility. Figure 6c shows that, as expected, the
checkpointing overhead increases as the transient servers
become more volatile (with a higher revocation rate and
a lower MTTF). With a highly volatile market, where the
MTTF is 1 hour, Flint’s checkpointing overhead increases
from 10% to 50% of the application’s typical running time.
This result represents an upper bound on Flint’s checkpoint-
ing overhead, since any further increase in the checkpointing
overhead will exceed the RDD recomputation time.

Spreading the application nodes across multiple availabil-
ity zones also does not seem to hurt application performance
significantly. We found no noticeable decrease in the per-
formance of KMeans, and only a 7% degradation for the
ALS workload. While the inter-availability zone network
latencies are certainly much higher compared to within a
zone, we conjecture that the large sized checkpoint writes
are bandwidth-sensitive and not latency-sensitive, and mul-
tiple availability zones can thus be used without a large per-
formance penalty.
Result: Flint’s checkpointing overhead is low, increasing
application running time between 2 and 10% even with
relatively low MTTF values. In addition, even for extremely
volatile markets, Flint’s checkpointing overhead increases
running time by less than 50%. Further, Flint’s application-
level approach significantly reduces the overhead relative to
systems-level checkpointing (from a 50% increase in running
time to a 10% increase in running time for ALS).

5.3 Impact of Server Revocations

We now consider various transient server revocation scenar-
ios and system configurations to demonstrate their impact on
running time. We are interested in evaluating the overhead
of recomputation triggered by server revocations. In all the
experiments, revoked servers are replaced by new transient
spot servers, such that Flint maintains a cluster size of ten.

Figure 7 shows the performance impact of a single server
revocation out of a cluster of size ten without Flint’s intelli-
gent checkpointing policy. The figure illustrates that a single
revocation can cause running time to increase sharply, up
to 90% in the case of PageRank. Since Flint immediately re-
places any revoked server, the increase in running time is due
to two factors: i) recomputing RDD partitions lost due to the
revocation and ii) the time to acquire replacement servers.
For PageRank, the time to acquire a new server contributes
5% of the increase in running time with the rest of the in-
crease coming from recomputing RDDs. For the other two
applications, which have longer running times, the time to
acquire replacement servers is negligible, and all of the in-
crease is due to recomputing lost RDDs.

We also evaluate the impact of the number of concur-
rent revocations on performance. Figure 8 shows the total

running time for the three batch applications when varying
the number of concurrent server revocations without check-
pointing. Here, a value of zero represents the baseline case
with no failures. Figure 8 shows that application running
time increases as the number of concurrent revocations in-
creases, by up to 100%. The large overhead is due to the
recomputation of lost RDD partitions, as well as their recur-
sive dependencies. The graph also shows that running time
is not strictly a linear function of the number of concurrent
revocations: the impact on performance decreases with each
additional revocation. Thus, for batch jobs, Flint’s approach
of using only a single market where all transient servers
are concurrently revoked incurs less overhead than spread-
ing servers across multiple markets with more frequent, but
smaller, revocation events.
Result: Without checkpointing, recomputation due to revo-
cation of even a few servers, causes a significant increase in
running time and cost. The impact on running time for batch
applications tends to decrease as the size of the revocation
event increases, which supports Flint’s batch checkpointing
policy for that selects spot instances from the same market.

Figure 8 also compares the running time with and with-
out Flint’s checkpointing policy as the size of the revoca-
tion events increase. Since checkpointing bounds the amount
of recomputation, the running time with checkpointing is
significantly smaller than the recomputation-only configu-
ration for all the three workloads. For PageRank(Figure 8a),
checkpointing is particularly beneficial—periodically saving
the shuffle output drastically reduces and bounds the recom-
putation required on a revocation. Similarly, checkpointing
the RDDs in KMeans (Figure 8c) bounds the performance
degradation when moving from 5 to 10 simultaneous fail-
ures. Further, the sublinear relationship between the size of
the revocation event and the running time is even stronger
when using checkpointing. That is, as the size of the revoca-
tion event increases, with checkpointing, the increase in run-
ning time flattens out, reflecting the bound on performance
degradation due to checkpointing. Of course, with no revo-
cation events, applying the checkpointing policy slightly in-
creases running time due to the overhead of checkpointing,
although this increase is not significant.

So far we have evaluated Flint’s performance on a cluster
with ten machines. As cluster size grows, the system scala-
bility is governed by the scalability of the underlying Spark
engine, as well as the checkpoint storage backend (HDFS in
our case). Flint’s policies for market selection are applicable
when an application starts and after revocation events and
thus incur little run-time overhead. Both Spark and HDFS
have been known to scale well to cluster sizes in the hun-
dreds of nodes [6]. However, we leave a more detailed anal-
ysis of Flint on larger cluster sizes to future work.
Result: Flint’s checkpointing policy significantly reduces
the increase in running time due to revocations, by 15-100%
for our three representative batch applications.

0 1 5 10
Failures

150

200

250

300

350

Ru
nn

in
g

Ti
m

e
(s

)

Checkpointing
Recomputation

(a) PageRank

0 1 5 10
Failures

1500

2000

2500

3000

3500

4000

Ru
nn

in
g

Ti
m

e
(s

)

Checkpointing
Recomputation

(b) ALS

0 1 5 10
Failures

1400
1600
1800
2000
2200
2400
2600
2800

Ru
nn

in
g

Ti
m

e
(s

) Checkpointing
Recomputation

(c) KMeans

Figure 8. Application running times under various failure scenarios with and without checkpointing. Applications are running
on a cluster of size ten. Zero indicates the baseline case of no failures.

No-failure Failure
0

50
100
150
200
250
300
350
400
450

Re
sp

on
se

 ti
m

e
(s

) Recomputation
Flint-Batch
Flint-Interactive

(a) Short query

No-failure Failure
0

100

200

300

400

500

600

Re
sp

on
se

 ti
m

e
(s

)Recomputation
Flint-Batch
Flint-Interactive

(b) Medium-length query

Figure 9. Flint’s interactive mode results in 10-20× im-
provement in TPC-H response times during failures.

5.4 Support for Interactive Workloads

Checkpointing is even more essential for interactive appli-
cations. Figure 9 shows the response time of two queries—
query three and query one of TPC-H—with and without re-
vocations. In this case, our revocation scenario is either all
ten servers are concurrently revoked (when using either re-
computation without checkpointing or Flint’s batch check-
pointing policy), or a single server is revoked ten times
(when using Flint’s interactive policies).

Without revocations, the checkpointing overhead for
Flint’s batch and interactive modes is low (~10%). The re-
sponse time without revocations is low for all three of our
policies: recomputation without checkpointing, Flint’s batch
checkpointing policy, and Flint’s interactive checkpointing
policy. For a small query, the latency is a few seconds, and
for a larger query, the latency remains less than ten sec-
onds. However, with revocations, the response time rises
substantially to 400-500 seconds for both query types with-
out any checkpointing. The rise occurs because recomputing
the RDDs lost due to revocation requires re-fetching the in-
put data from Amazon’s S3 storage service, and then again
re-partitioning and de-serializing the data.

Using Flint’s batch checkpointing policy, the response
time reduces by a factor of 4×. In addition, using Flint’s in-
teractive checkpointing policy, which is explicitly designed
to trade-off cost for interactive performance, reduces the re-
sponse time even further: from 100-150 seconds with the
batch checkpointing policy to 28-55 seconds with the inter-
active checkpointing policy. This additional reduction (3×)
in the response time is due to the interactive checkpointing
policy and the market selection that mixes different types of

10

20

30

0 5 10 15 20 25
MTTF(Hours)

R
u
n
 T

im
e
 I
n
c
re

a
s
e
 (

%
)

(a) Performance vs. MTTF

0.0

2.5

5.0

7.5

10.0

12.5

Current Spot High
Market Volatility

R
u
n
 T

im
e
 I
n
c
re

a
s
e
 (

%
)

Unmodified Spark

Flint

(b) Flint vs. Unmodified Spark

Figure 10. Flint’s increase in running time compared to
using on-demand servers is small in today’s spot market, and
is low even for highly volatile markets equivalent to GCE.

servers in the same cluster. Flint’s batch policies select mar-
kets to minimize the expected cost, while Flint’s interactive
policy also considers the variance in response time when se-
lecting markets. This experiment demonstrates the benefit of
considering response time.
Result: Flint’s checkpointing and server selection policies
decrease the response time of interactive workloads by an
order of magnitude (∼10×). Flint’s interactive policy results
in lower response times than its batch policy, since it spreads
risk by mixing transient servers from different markets.

5.5 Cost-Performance Tradeoff

To quantify the impact of Flint on cost and performance, we
use traces of EC2 spot prices from January to June 2015.
We also use empirically collected availability statistics for
over 100 GCE Preemptible Instances that we requested and
were revoked over a one month period in August 2015. In
addition to examining Flint’s cost and performance on real
data, we also present results on synthetic data with lower
MTTFs to demonstrate Flint’s performance under extreme
conditions, i.e., with high market volatility. For these experi-
ments, we simulate the performance of a canonical program
that checkpoints 4GB RDD partitions every interval.

We first demonstrate the decrease in running time as
the MTTF of the transient servers increases. As shown in
Figure 10a, once the MTTF extends beyond twenty hours,
Flint’s increase in running time is less than 10% compared
to using on-demand servers. Since MTTFs of twenty hours
are on the lower end for EC2 spot markets (assuming a bid
equal to the on-demand price), Flint’s performance on tran-
sient servers will be on par with on-demand servers. Fig-
ure 10b quantifies this performance by showing the increase

Fl
in
t-

Ba
tc
h

Fl
in
t-

In
te
ra
ct
iv
e

Sp
ot
-F
le
et

EM
R-
Sp
ot

O
n-
de
m
an
d0.0

0.2

0.4

0.6

0.8

1.0

U
ni
t
C
os
t

(a) Flint cost saving.

40

80

120

0 1 2 3 4
Bid

On Demand
 Ratio

N
o

rm
a

liz
e

d
 C

o
s
ts

(%
)

m1.xlarge

m3.2xlarge

m2.2xlarge

(b) Cost as a function of the bid price.

Figure 11. Flint determines the bid for each market based
on our expected cost model. Flint is able to run both batch
and interactive applications at 10% of the on-demand cost.

in running time when using Flint on spot instances compared
to using on-demand servers. The graph shows that in the
current spot market there is little increase (<1%) in running
time when using Flint versus using on-demand servers. By
contrast, when running unmodified Spark on spot instances
(while still employing Flint’s server selection policies), the
increase in running time is over 5%.

Of course, the existing spot market in EC2 is under-
utilized and not particularly volatile. Thus, we also show
results for a higher volatility market based on our GCE data
with an MTTF close to 20 hours. In this case, unmodified
Spark on spot instances has an increase in running time of
12%—Flint’s increase in running time is <5%.
Result: Flint causes a small increase in running time (1%-
7%) compared to on-demand servers for transient servers
with both high and low volatilities, represented by EC2 spot
markets and GCE preemptible instances, respectively.

Lastly, we quantify Flint’s cost savings for batch and
interactive workloads compared to running on equivalent
on-demand instances. We compare Flint’s server selection
policies from Section 3 with multiple existing approaches
for running Spark on EC2 spot instances. In particular, we
compare against EC2’s Elastic MapReduce (EMR) managed
service to execute unmodified Spark programs on spot in-
stances. Note that Spark-EMR on EC2 incurs an additional
flat fee of 25% of the on-demand price per hour in addi-
tion to the cost of the spot instances. We also examine us-
ing SpotFleets in EC2, since this is an application-agnostic
service that EC2 provides to automatically replace revoked
spot instances with a spot instance from another market. In-
terestingly, this EC2 service, like Flint, automatically bids
the on-demand price for spot instances on behalf of users.
SpotFleets enable users to set a policy that automatically se-
lects an instance from either the cheapest market or the least
volatile market (without considering the impact of revoca-
tions on performance). Thus, comparing Flint with SpotFleet
represents the benefit of embedding the server selection and
replacement policy into Flint and making these policy deci-
sions based on the characteristics of the application.

For this experiment, we configure SpotFleets to use two
r3 instance types in the fleet. Flint’s cost-aware server se-

lection (for both batch and interactive jobs) results in 90%
cost savings compared to executing on on-demand servers.
Combined with our previous result that showed the overhead
of Flint compared to using on-demand servers in the current
spot market, this demonstrates that Flint achieves its goal
of executing BIDI workloads at a performance level near
that of on-demand servers, but at a price near that of tran-
sient servers. In addition, Flint’s batch and interactive poli-
cies also lower costs relative to using Spark-EMR on spot in-
stances by 66%, and lower costs relative to using SpotFleets
by 50%. These results are important in that they demonstrate
Flint’s cost savings are not simply due to the fact that spot
instances are significantly cheaper than on-demand servers.
Since Spark-EMR and SpotFleets also use spot instances,
the savings stem solely from Flint’s intelligent application-
aware checkpointing and server selection policies.

At current spot prices, improving on the cost of using on-
demand servers is not challenging—even simple strategies
for using spot instances are capable of improving on on-
demand costs. In contrast, by comparing with Spark-EMR
and SpotFleets, we show that Flint not only results in lower
costs than using on-demand servers, but also lower costs
than using spot instances when using unmodified Spark and
application-agnostic bidding strategies, respectively.

Flint uses EBS for checkpoint storage, which incurs an
extra cost. Due to the low space requirements of periodic
checkpointing and garbage collection, these storage costs are
also low. EBS volumes cost $0.1 per GB per month, and
because Flint provides Spark “as a service,” these volumes
can be reused among different jobs, and thus their monthly
cost is amortized. The r3.large servers we use have 15GB
of main memory, and we conservatively provision twice that
memory for storing checkpoints. Note that Spark only uses
40% of RAM for storing the RDD data—the rest is used as
an RDD cache—thus we effectively over-provision by more
than a factor of four, and can always add more EBS volumes
if storage space is running low by dynamically extending
HDFS. The hourly cost for EBS volumes has an overhead
of 0.1∗30/(24∗30) = 0.004. This extra cost is ∼2% of the
on-demand cost and 20% of the average spot instance costs.
We account for these storage costs in our cost analysis.

Finally, Figure 11b shows the cost of using different spot
instance types on EC2 as a function Flint’s bid price. This
figure demonstrates that in the current EC2 spot market,
Flint’s default policy of bidding the on-demand price results
in the lowest cost. As the figure shows, there is a wide range
of bid prices for each market, ranging from roughly half the
on-demand price to 1.5× the on-demand price that yield the
lowest cost. This behavior results from the spot prices in EC2
being “peaky” where they frequently spike from very low to
very high, and then return to a low level. As a result, placing
a bid price somewhere above the low steady state, but below
the average peak, results in the same cost. Thus, unlike prior
work that focuses on optimizing bidding strategies for EC2

spot instances, we find that in practice simply bidding the
on-demand price is optimal, and that there is actually a wide
range of bid prices that result in this optimal cost.
Result: Flint executes applications at near the performance
of on-demand servers (within 2-10%) but at a cost near that
of spot servers, which is 90% less than using on-demand
servers and 50-66% less than using existing managed ser-
vices such as SpotFleets and Spark-EMR.

6. Related Work
Our work builds upon a large amount of prior work on spot
instances, as well as fault tolerance mechanisms.
Spot Markets. Since servers in the spot market are sig-
nificantly cheaper than the equivalent on-demand servers,
they are attractive for running delay-tolerant batch jobs [30,
16, 1]. Checkpointing is a common fault-tolerance mech-
anism for mitigating the impact of revocations on batch
jobs in the spot market [32, 18, 35]. However, Flint em-
ploys fine-grained application-level checkpointing, rather
than systems-level checkpointing, as in previous work. In
addition, Flint focuses on distributed data-parallel jobs and
not simple single-node batch jobs, as in recent work [30].

Prior work has also used spot instances for data-parallel
tasks. For example, EC2’s EMR service that we compare
against [2] allows Hadoop and Spark jobs to run on spot
instances, and may be combined with SpotFleets to define
an automated policy to replace revoked spot instances. How-
ever, these services are application-agnostic and, as we show,
by not considering the application characteristics they may
make non-optimal decisions. In addition, prior work has ex-
plored running Hadoop jobs on spot instances [19, 11]. How-
ever, Hadoop lacks the built-in checkpointing and recompu-
tation mechanisms that Flint leverages in Spark. Prior work
has also explored running a distributed database on spot in-
stance [9, 24]. This work addresses the problem of decid-
ing serialization points for database operations, which differs
from Flint’s focus on defining checkpointing and server se-
lection policies. Finally, Flint also supports interactive work-
loads. Prior work demonstrates that single-node interactive
applications can be run on spot instances using continuous
system-level checkpointing and nested virtualization [26].
However, Flint is a distributed data-parallel system for run-
ning BIDI workloads on transient servers.
Fault-tolerance Mechanisms. The performance effects of
server failures has been well studied for Hadoop [14, 15].
Similarly, our work models the impact of server failures and
revocations in Spark. Flint’s intelligent checkpointing ap-
proach to minimize running time is based on the optimal
approach for single-node batch jobs [12]. Other checkpoint-
ing mechanisms and policies have been developed for other
types of applications. For example, Zorro uses checkpoint-
ing and other optimizations to recover from failures in dis-
tributed graph processing frameworks [23]. Similarly, Naiad
also includes a policy for automatically checkpointing ver-
tices and recovering from server failures [22]. Spark Stream-

ing [37] incorporates automated periodic checkpointing of
RDDs to enable real-time data processing, but does not take
into account recomputation overhead and cluster volatility.
These systems’ policies may also benefit BIDI workloads
running on transient servers, and are future work.
Bidding Policies. Spot market prices are determined by
a second price auction and have been modeled in prior
work [8]. Numerous bidding strategies for individual spot
markets to optimize the cost/performance of batch jobs ex-
ist [40, 33, 38, 39, 29, 31]. However, as we show, a simple
bidding strategy of bidding the on-demand price is optimal
for Flint. By focusing on the checkpointing and server selec-
tion, Flint is applicable to transient servers that do not per-
mit bidding, such as GCE’s Preemptible Instances that offer
transient servers at a fixed price.

7. Conclusion
The low price of transient servers is attractive for recent
cluster-based in-memory data-parallel processing frame-
works, since these frameworks need to cache large datasets
in memory across a large number of servers. However, tran-
sient server revocations degrade the performance and in-
crease the cost of these frameworks. In this paper, we design
Flint, which includes intelligent, application-specific check-
pointing and server selection policies to optimize the use of
transient servers for data-parallel processing. In particular,
Flint’s policies support BIDI workloads that may be either
batch or interactive. Our results show Flint enables a 90%
cost saving compared to using on-demand instances and a
slight decrease in performance of 2%.
Acknowledgements. We thank all the reviewers and our
shepherd Joseph Gonzalez for their insightful comments,
which improved the quality of this paper. This work is sup-
ported in part by NSF grants #1422245 and #1229059.

References
[1] PiCloud. http://www.multyvac.com, May 1st 2014.

[2] Amazon Elastic Map Reduce for Spark. https://aws.
amazon.com/elasticmapreduce/details/spark/, June
2015.

[3] Livejournal Social Network Dataset. https://snap.
stanford.edu/data/soc-LiveJournal1.html, June
2015.

[4] Transaction Processing Performance Council - Benchmark H.
http://www.tpc.org/tpch/, June 2015.

[5] Hadoop Recovery. https://twiki.grid.iu.edu/bin/
view/Storage/HadoopRecovery, March 2016.

[6] M. Armbrust, T. Das, A. Davidson, A. Ghodsi, A. Or,
J. Rosen, I. Stoica, P. Wendell, R. Xin, and M. Zaharia. Scal-
ing Spark in the real world: performance and usability. VLDB,
8(12):1840–1843, 2015.

[7] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: Relational Data Processing in Spark.

https://aws.amazon.com/elasticmapreduce/details/spark/
https://aws.amazon.com/elasticmapreduce/details/spark/
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://snap.stanford.edu/data/soc-LiveJournal1.html
http://www.tpc.org/tpch/
https://twiki.grid.iu.edu/bin/view/Storage/HadoopRecovery
https://twiki.grid.iu.edu/bin/view/Storage/HadoopRecovery

In SIGMOD, 2015.

[8] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir.
Deconstructing Amazon EC2 Spot Instance Pricing. In
CloudCom, November 2011.

[9] C. Binnig, A. Salama, E. Zamanian, M. El-Hindi, S. Feil,
and T. Ziegler. Spotgres-Parallel Data Analytics on Spot
Instances. In ICDEW, 2015.

[10] K. M. Chandy and L. Lamport. Distributed Snapshots: Deter-
mining Global States of Distributed Systems. ACM Transac-
tions on Computer Systems (TOCS), 3(1), 1985.

[11] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi,
and C. Krintz. See Spot Run: Using Spot Instances for
MapReduce Workflows. In HotCloud, June 2010.

[12] J. T. Daly. A Higher Order Estimate of the Optimum Check-
point Interval for Restart Dumps. Future Generation Com-
puter Systems, 22(3), 2006.

[13] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, December 2004.

[14] F. Dinu and T. Ng. Understanding the Effects and Impli-
cations of Compute Node Related Failures in Hadoop. In
HPDC, June 2012.

[15] F. Faghri, S. Bazarbayev, M. Overholt, R. Farivar, R. H.
Campbell, and W. H. Sanders. Failure Scenario as a Service
(FSaaS) for Hadoop Clusters. In Workshop on Secure and
Dependable Middleware for Cloud Monitoring and Manage-
ment, 2012.

[16] N. Jain, I. Menache, and O. Shamir. On-demand, Spot,
or Both: Dynamic Resource Allocation for Executing Batch
Jobs in the Cloud. In ICAC, June 2014.

[17] B. Javadi, R. Thulasiram, and R. Buyya. Statistical Modeling
of Spot Instance Prices in Public Cloud Environments. In
UCC, December 2011.

[18] S. Khatua and N. Mukherjee. Application-centric Resource
Provisioning for Amazon EC2 Spot Instances. In EuroPar,
August 2013.

[19] H. Liu. Cutting MapReduce Cost with Spot Market. In
HotCloud, June 2011.

[20] D. Meisner, C. Sadler, L. Barroso, W. Weber, and T. Wenisch.
Power Management for Online Data-Intensive Services. In
ISCA, June 2011.

[21] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkatara-
man, D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, et al.
MLlib: Machine Learning in Apache Spark. arXiv preprint
arXiv:1505.06807, 2015.

[22] D. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi. Naiad: A Timely Dataflow System. In SOSP,
October 2013.

[23] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell. Zorro:
Zero-cost Reactive Failure Recovery in Distributed Graph
Processing. In SOCC, August 2015.

[24] A. Salama, C. Binnig, T. Kraska, and E. Zamanian. Cost-
based Fault-tolerance for Parallel Data Processing. In SIG-
MOD, 2015.

[25] P. Sharma, D. Irwin, and P. Shenoy. How Not to Bid the
Cloud. University of Massachusetts Technical Report UM-
CS-2016-002, 2016.

[26] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy.
SpotCheck: Designing a Derivative IaaS Cloud on the Spot
Market. In EuroSys, April 2015.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop Distributed File System. In MSST, May 2010.

[28] R. Singh, P. Sharma, D. Irwin, P. Shenoy, and K. Ramakr-
ishnan. Here Today, Gone Tomorrow: Exploiting Transient
Servers in Data Centers. IEEE Internet Computing, 18(4),
July/August 2014.

[29] Y. Song, M. Zafer, and K. Lee. Optimal Bidding in Spot
Instance Market. In Infocom, March 2012.

[30] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy.
SpotOn: A Batch Computing Service for the Spot Market. In
SOCC, August 2015.

[31] S. Tang, J. Yuan, and X. Li. Towards Optimal Bidding
Strategy for Amazon EC2 Cloud Spot Instance. In IEEE
CLOUD, June 2012.

[32] W. Voorsluys and R. Buyya. Reliable Provisioning of Spot In-
stances for Compute-Intensive Applications. In AINA, March
2012.

[33] S. Wee. Debunking Real-Time Pricing in Cloud Computing.
In CCGrid, May 2011.

[34] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica.
Graphx: A Resilient Distributed Graph System on Spark. In
First International Workshop on Graph Data Management
Experiences and Systems. ACM, 2013.

[35] S. Yi, D. Kondo, and A. Andrzejak. Reducing Costs of Spot
Instances via Checkpointing in the Amazon Elastic Compute
Cloud. In IEEE CLOUD, July 2010.

[36] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. Franklin, S. Shenker, and I. Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-
Memory Cluster Computing. In NSDI, April 2012.

[37] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized Streams: Fault-tolerant Streaming Computation
at Scale. In SOSP, 2013.

[38] S. Zaman and D. Grosu. Efficient Bidding for Virtual Ma-
chine Instances in Clouds. In IEEE CLOUD, July 2011.

[39] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao. Dynamic
Resource Allocation for Spot Markets in Clouds. In Hot-ICE,
March 2011.

[40] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang.
How to Bid the Cloud. In SIGCOMM, August 2015.

	Introduction
	Background and Overview
	Transient Servers
	Spark Background
	Flint Overview

	Flint Design
	Batch Applications
	Checkpointing Policy
	Server Selection Policy

	Interactive Applications
	Checkpointing Policy
	Server Selection

	Flint Implementation
	Experimental Evaluation
	Workloads
	Quantifying the Checkpointing Overhead
	Impact of Server Revocations
	Support for Interactive Workloads
	Cost-Performance Tradeoff

	Related Work
	Conclusion

